MECHANISM OF REACTIONS OF α -DIAZOSULFONES—III¹

FURTHER STUDY OF THE ACID-CATALYSED HYDROLYSIS OF ARYL- AND ALKYLSULFONYLDIAZOMETHANES

J. B. F. N. ENGBERTS and B. ZWANENBURG

Department of Organic Chemistry of the University, Bloemsingel 10, Groningen, The Netherlands

(Received in the UK 8 June 1967; accepted for publication 3 August 1967)

Abstract—The mechanism of the acid-catalysed hydrolysis of aryl-, and in particular, alkylsulfonyldiazomethanes has been studied in water, 40% (v/v) dioxan-water and 60% (v/v) dioxan-water as the solvents. The reaction is specifically catalysed by hydronium ions as indicated by the solvent deuterium isotope effect. Strong evidence is presented for carbon protonation as the first step during the hydrolysis. Very fast H-D exchange of the methine proton was observed by PMR spectroscopy in 60% (v/v) dioxandeuterium oxide solutions of strong acids and bases. In neutral 60% (v/v) dioxan-deuterium oxide solutions the rate constants of exchange could be evaluated. The logarithm of the pseudo first order rate constants of hydrolysis are linear in H_0 for HClO₄. HCl and H_2SO_4 as the catalysts. The slopes of these linear plots increase with increasing nucleophilicity of the conjugate base of the acid. At constant ionic strength the pseudo first order rate constants are linear in the acid concentration. At a constant HClO₄ concentration, the salts NaClO₄, NaCl and NaBr showed a positive salt effect which increased with increasing nucleophilicity of the anion. In acidic media containing chloride anions, the rate enhancement as compared with solutions containing the same amount of perchlorate anions, is directly correlated to the percentage of RSO₂CH₂Cl formed. A bimolecular rate determining step adequately accounts for the kinetic data. The activation parameter ΔS^{\dagger} is also in the region of an A-2 mechanism. The nucleophilic contribution to the transition state is rather small. The oxibase scale has been used to correlate the nucleophilic sensitiveness of several diazonium ions.

INTRODUCTION

IN a previous publication¹ we proposed a mechanism for the acid-catalysed hydrolysis of arylsulfonyldiazomethanes.² This mechanism was classified as the A-2 type of specific hydronium ion catalysis:

ArSO₂CHN₂ + H₃O^{$$\oplus$$} \Rightarrow ArSO₂CH₂N₂ ^{\oplus} + H₂O
ArSO₂CH₂N₂ ^{\oplus} + nucleophile slow products + N₂

The occurrence of specific hydronium ion catalysis was the result of the electronic influence of the sulfonyl group on the diazo part of the molecule.¹

The present paper³ describes a kinetic study of the acid-catalysed hydrolysis of two alkylsulfonyldiazomethanes RSO_2CHN_2 (I, $R = PhCH_2$; II, $R = (Me_3C)$. Several arguments not used previously have been applied to elucidate the mechanism of hydrolysis for α -diazosulfones in more detail. The kinetic measurements of I were performed in water, 40% (v/v) dioxan-water and 60% (v/v) dioxan-water, those of II in 40% (v/v) dioxan-water. In addition some measurements were carried out with arylsulfonyldiazomethanes¹ ArSO₂CHN₂ (Ar = p-MeOC₆H₄ and Ar = p-MeC₆H₄).

RESULTS AND DISCUSSION

The proton transfer. The hydrolysis of α -diazosulfones is strongly catalysed by acids such as HClO₄, H₂SO₄ and HCl and the reaction is definitely ionic in character.¹ Acid concentrations between 0.025 and 2.6N were necessary in order to obtain convenient reaction rates. The hydrolysis of I and II is specifically catalysed by hydronium ions on basis of the solvent deuterium isotope effect,⁴ k_D/k_H which is appreciably larger than unity (Table 1). A rapid equilibrium prior to a rate determining step is supported by the observation of fast hydrogen-deuterium exchange at the diazo carbon atom in acidic solutions by PMR spectroscopy.*

Compound	Solvent	Acid concentration	% D20	k _D /k _H
	water	0-0478N HClO4	99 .8	3.7
I	water	0-100N HClO4	99 .6	3.5
I	water	0-250N HCIO	98 ·7	3.7
I	water	0.250N HCIO	98·7	4 ·7
		+0.391 NaCl		
I	water	0-493N HClO	97.4	5.3
I	water	0.847N HClO4	960	4·8
I	water	0-225N HCl	98·3	4 ·4
I	water	0-319N HCl	9 7·7	5.1
I	water	0-541N HCl	96·5	4·7
I	water	0-996N H ₂ SO₄	99 ·1	5-0
I	water	1.517N H ₂ SO ₄	98 .6	4.3
I	40% dioxan-water	0.221N HCIO	98 ·1	3.3
II	40% dioxan-water	1-409N HClO4	88·5	2.3

TABLE 1. THE SOLVENT DEUTERIUM ISOTOPE EFFECT AT 25°

Table 2. Hydrolysis of p-methoxyphenylsulfonyldiazomethane in aqueous buffers at 40.00°

^с сісн ₂ соон in mole/1	^C CICH ₂ COONs in mole/l	c _{NaClO4} in mole/l	рН	$\frac{k_{\phi} \times 10^5}{\mathrm{sec}^{-1}}$
0.200	0.100		1.78	29-0
0.100	0.050	0.020	1.79	26-9
0-050	0.025	0.075	1.78	26.4

A well established test for specific hydronium ion catalysis is the measurement of the reaction rate in a series of buffers of different total concentration but with a constant ratio of acid to conjugate base. The results of the measurements with *p*-methoxyphenylsulfonyldiazomethane in chloroacetic acid-chloroacetate buffers, which are presented in Table 2, show that within the limits of accuracy the reaction rate only depends on the hydronium ion concentration.

Formally three basic centra are present in the α -diazosulfones: the diazo carbon atom, the terminal N atom and the O atoms of the sulfonyl group. However, as will

*The exchange experiment for I has been carried out as described for *p*-methoxyphenylsulfonyldiazomethane and t-butylsulfonyldiazomethane.¹ be argued below, we assume that the substrate protonated at the diazo carbon atom is the actual species involved in the rate determining liberation of N_2 .

The intermediacy of a species protonated at the sulfonyl oxygen can be excluded when the basicity of the sulfonlyl group is considered in connection with the observed reaction rates. From the positions of the symmetric and asymmetric IR sulfone absorptions² it appears⁵ that I is considerable less basic than dimethylsulfone which* has a pK_b of +12.3. Using the data presented in Table 8 the rate constant of the slow step with chloride ions or water as nucleophile amounts to about $10^{10}-10^{11}$ $1.mole^{-1} sec^{-1}$, i.e. almost diffusion controlled. This rules out protonation of the sulfonyl group.

There are several arguments that favour C protonation over N protonation as the first step of the hydrolysis reaction. First of all, the conversion of RSO_2CHN_2 into $RSO_2CH_2N_2^{\oplus}$ will remove the resonance stabilization of the diazo part of the molecule and the system is prepared for the liberation of the very stable N_2 molecule. Secondly, the basicity of the terminal N atom will be decreased compared to alkyldiazomethanes because of a larger contribution of resonance structure B (as indicated by spectral evidence²) due to the electron attracting effect of the sulfonyl group.

$$\begin{array}{c} \text{RSO}_2\text{CH} \stackrel{\bigoplus}{\longrightarrow} \stackrel{\ominus}{\longrightarrow} \\ \text{A} \\ \end{array} \stackrel{\bigoplus}{\longrightarrow} \begin{array}{c} \text{RSO}_2\text{CH} \stackrel{\bigoplus}{\longrightarrow} \\ \text{B} \\ \end{array}$$

Furthermore, direct conjugation of the positive charge in C and D with the sulfonyl group is highly unfavourable.

$$\begin{array}{c} \overset{\oplus}{\operatorname{RSO}_2CH} \longrightarrow & \overset{\oplus}{\operatorname{NH}} \\ & & & \\ C & & & D \end{array}$$

The deshielding effect observed for the $--\underline{CHN}_2$ signal in the PMR spectrum of *p*-methoxyphenylsulfonyldiazomethane, benzylsulfonyldiazomethane and t-butylsulfonyldiazomethane with increasing concentration in deuterochloroform shows that intermolecular hydrogen bonding actually exists in the unprotonated α -diazosulfones (Table 3). Hydrogen bonding will be even more pronounced for the polar and highly acidic diazonium ion and will enhance⁶ the rate of exchange of the methine protons of the diazo moiety via protonation of the diazo carbon atom. In

TABLE 3. CONCENTRATION DEPENDENCE OF THE CHEMICAL SHIFT OF THE METHINE PROTON IN p-MeOC₆H₄SO₂CHN₂, PhCH₂SO₂CHN₂ and Me₃ CSO₂CHN₂ (solutions in CDCl₃, TMS as internal standard)

p-MeOC ₆ H ₄ S	O ₂ CHN ₂	PhCH ₂ SO ₂	CHN ₂	Me ₃ CSO ₂ CHN ₂				
Concentration by wt %	δ (ppm)	Concentration by wt %	δ (ppm)	Concentration by wt %	δ (ppm)			
6.4	5·27	4.7	4.99	4.6	5-03			
14.6*	5-31	11-0	5.04	13-0	5.11			
30-0	5.37			23.3	5.17			

* δ in CD₃OD 5-94 ppm, indicating intramolecular hydrogen bonding.

* pK_e values have been calculated relative to the H₀ function of 100% H₂SO₄. Some uncertainty is included in their absolute values.

fact, the protonation of the diazo carbon atom may resemble the mechanism proposed by Corey and Lowry⁷ for the protonation of α -sulfonyl carbanions.

Compound	Catalyst	Temp (°C)	$\frac{k_{\rm ex} \times 10^5}{({\rm sec}^{-1})}$	$k_{\phi} imes 10^{54}$ (sec ⁻¹)
PhCH ₂ SO ₂ CHN ₂		37·7 ± 0-8	36	19-9
PhCH,SO,CHN,	0-400N NaClO	37.7 ± 0.8	158	
PhCH ₂ SO ₂ CHN ₂	0-400N NaCl	37·7 ± 0-8	68	*
Me ₃ CSO ₂ CHN ₂		37·7 ± 0-8	34	c. 0-91†
p-MeOC ₆ H ₄ SO ₂ CHN ₂		37·7 ± 0-8	96	109
P-MeOC ₆ H ₄ SO ₂ CHN ₂		25.5 ± 0.5	20	
-McC ₆ H ₄ SO ₂ CHN ₂		37·7 ± 0-8	42	47-0
P-MeC ₆ H ₄ SO ₂ CHN ₂	0-100 N NaClO ₄	37·7 ± 0-8	99	
p-MeC ₆ H ₄ SO ₂ CHN ₂	0-400 N NaClO4	37·7 ± 0·8	140	
P-MeC ₆ H ₄ SO ₂ CHN ₂	0-100 N NaCl	37.7 ± 0.8	53	
p-MeC ₆ H ₄ SO ₂ CHN ₂	0-400 N NaCl	37·7 ± 0-8	89	
P-MoC, H, SO, CHN,	0061 N CH3COOH	37.7 ± 0.8	95	
P-McC, H, SO, CHN,	0-014 N HCIO	37.7 ± 0.8	very fast t	
p-MeC_H_SO,CHN,	0013 N K,CO,	37.7 + 0.8	very fast	

TABLE 4. RATES OF HYDROGEN-DEUTERIUM EXCHANGE POR α -diazosulfones in 60% dioxandeuterium oxide

* Value of k, in 0.400N HClO₄ in 40% dioxan-water at 25°, see Ref. 1.

† By extrapolation of the relation $\log k_{\psi} vs. -H_0$.

[‡] Rate of hydrolysis under the same conditions $k_{\phi} < 10^{-5} \text{ sec}^{-1}$.

It was possible to estimate the rate of deuteration in 60% dioxan-deuterium oxide* mixtures from the rate of exchange of RSO₂CHN₂ to RSO₂CDN₂ (Table 4). The larger rate of exchange of p-MeOC₆H₄SO₂CHN₂ as compared to p- $MeC_6H_4SO_2CHN_2$ suggests that the mechanism of exchange involves a ratecontrolling protonation to give the diazonium ion which is then rapidly deprotonated by a solvent molecule. Since exchange is much more rapid than hydrolysis, N_2 is expelled only very rarely during the process of exchange. A simple steady state treatment $(c_{D_{2}O} \ge c_{RSO_{2}CHN})$ shows that the pseudo first-order rate constant of exchange (k_{ex}) is proportional to the rate constant of deuteration (k_d) : $k_{ex} = e \cdot k_d$. In this equation the constant e determines the solvent deuterium isotope effect on this reaction. In diluted strong acids the exchange is very fast. In neutral 60% dioxan-deuterium oxide solutions sodium perchlorate exhibits a larger positive salt effect on the exchange of I than sodium chloride. It is noteworthy that the ratio of k_{ex} values for p-MeOC₆H₄SO₂CHN₂ and p-MeC₆H₄SO₂CHN₂ is about the same as the ratio of the respective k_{ϕ} values for hydrolysis in 0.4N HClO₄ in 40% dioxan-water¹. The rate of deuteration of I and II is larger than anticipated from comparison of their k_{ϕ} values with those of the arylsulfonyldiazomethanes. The k_{ex} values at 25.5° and 37.7° for p-MeC₆H₄SO₂CHN₂ permit a rough estimation of the ΔS^{2} value for the exchange reaction. The calculated slightly positive value (about 4 e.u.) is within the expected range for this type of reaction.⁸

^{*} The deuterium oxide had p^D 6.8. The salts used in the exchange measurements contained no acid.

The fast exchange reaction in alkaline media^{*} (Table 4) may proceed via the carbanion RSO_2CN_2 on the analogy of the ion $RCOCN_2$ proposed by Morrison and Yates⁹ for the base-catalysed hydrogen to deuterium exchange in α -diazo-ketones.

In 60% dioxan-deuterium oxide mixtures the rate of exchange in ω -diazoaœtophenone is very slow compared with that of the α -diazosulfones. After 8 days at about 20° only 60% exchange had occurred (in this time interval decomposition of the α -diazoketone was negligible). In *acidic media* this picture is maintained³ as appeared from the work of Dahn and Gold.¹⁰ This slower exchange rate is in line with the behaviour of α -sulfonyl- and α -carbonyl carbanions, the former being protonated more rapidly than the latter.¹¹

Rate dependence on the acidity of the medium. The two alkylsulfonyldiazomethanes I and II showed a linear relationship between log k_{ψ} and Hammett's acidity function $^{12-14}$ H₀ for HClO₄, H₂SO₄ and HCl as catalyst in water or in 40% and 60% dioxan-water solutions. (Fig. 1 and Table 5).

FIG. 1. Relation between log k_{ψ} and H₀ in the hydrolysis of benzylsulfonyldiazomethane (I) and t-butylsulfonyldiazomethane (II) at 25°

I in H_2O ; $HClO_4$ I in H_2O ; HClI in H_2O ; H_2SO_4 I in 40% dioxan- H_2O ; $HClO_4$ I in 40% dioxan- H_2O ; HClI in 60% dioxan- H_2O ; $HClO_4$ I in 60% dioxan- H_2O ; $HClO_4$ I in 40% dioxan- H_2O ; $HClO_4$

* In the presence of sodium hydroxide decomposition occurs with formation of red coloured products.

Compound	Solvent	Catalyst	Slope of log k↓vs. —H₀	Slope of $k_{\psi}^{\text{HCI}}/k_{\psi}^{\text{HCIO}_{4}}$ (H ₀) <i>vs.</i> c_{CI}^{Θ}
I	H ₂ O	HClO₄	1.17	
I	H ₂ O	H ₂ SO ₄	1.28	
I	H ₂ O	HCI	1.55	2.0
I	40% dioxan-H ₂ O	HClO4	0.95	
I	40% dioxan-H ₂ O	HCl	1.46	7.6
I	60% dioxan-H ₂ O	HClO₄	0.98	
I	60% dioxan-H ₂ O	HCI	1.7	c. 50
II	40% dioxan-H ₂ O	HClO₄	1-13	
П	40% dioxan-H ₂ O	HC	1.56	c. 3.0

TABLE 5. THE ACID-CATALYSED HYDROLYSIS OF I AND II AT 25°

The slopes of log k_{ψ} vs. $-H_0$ are usually larger than unity and increased with increasing nucleophilic character of the conjugate base of the catalyst (HClO₄ < H₂SO₄ < HCl). Using the Zucker-Hammett criterion, the slope of about unity would imply that an A-1 mechanism operates.¹⁵ However, this empirical criterion is only useful in the case of N and O bases and is especially unreliable for hydrocarbon-like bases as has been argued before.¹ The only fairly safe conclusion that can be drawn from the relation dlog $k_{\psi} = -c$. dH₀ (c is a constant) for HClO₄ is, that the transition state of the slow step has approximately the same amount of hydrogen bonding as the protonated Hammett indicators. Plots of log k_{ψ} vs. $-H'_{R}$ (Ref. 16) show a straight line, however with a slope appreciably less than unity (about 0.5), suggesting no similarity in the solvation of the transition state of the slow step and the protonated olefins by means of which the H'_R function has been defined. Schubert and Quacchia¹⁷ have clearly demonstrated that with increasing importance of hydrogen bonding carbon bases tend to follow $-H_0$ rather than $-H'_{R}$.

The greater slope of $\log k_{\psi} vs. -H_0$ for HCl than for HClO₄ and the faster reaction in HCl solution as compared with HClO₄ at the same H₀ indicate that a nucleophile participates in the transition state of the slow step. The rate enhancement by chloride ions is demonstrated by the plots of $k_{\psi}^{\text{HCl}}/k_{\psi}^{\text{HClO}_4}$ (at the same H₀) against the chloride ion concentration which show straight lines with positive slopes (Fig. 2 and Table 5).

For benzylsulfonyldiazomethane I in aqueous $HClO_4$ the Bunnett-criterion¹⁸ can be applied. Despite some scattering of the points, a w-value of about -4 has been evaluated from a plot of log $k_{\psi} + H_0$ vs. log a_{H_2O} For hydrocarbon-like bases Bunnett¹⁸ suggested a w-value of about -3 in the case of an A-2 mechanism. Unfortunately, the lack of well defined examples makes this empirical criterion questionable.

If the ionic strength μ is kept constant by the addition of the sodium salt of the acid catalyst and the acid-salt ratio is varied, the rates of hydrolysis of I in aqueous solution are proportional to the acid concentration (Fig. 3): $dk_{\psi} = c'. dc_{H}^{\oplus}$. This relationship was observed for HClO₄-NaClO₄ ($\mu = 1.596$ resp. 2.543M) and HCl-NaCl ($\mu = 1.596$ M) solutions. The constant c' depends clearly on the ionic strength

FIG. 2. Plot of $k_{\psi}^{\text{HCI}}/k_{\psi}^{\text{HCIO}_4}$ (H₀) vs. c_{HCI} (mole/l) for the hydrolysis of benzylsulfonyldiazomethane at 25°

H₂O
 ↔ 40% dioxan-H₂O
 ♥ 60% dioxan-H₂O

FIG. 3. Relation between k_ψ (scc⁻¹) and c_H[⊕](mole/I) for the hydrolysis of benzylsulfonyl-diazomethane at constant ionic strength

 O HCl + NaCl; μ = 1.596
 O HCl → NaClO + NaClO + μ = 2.543

 $\begin{array}{c} \hline HClO_4 + NaClO_4; \mu = 2.543 \\ \hline HClO_4 + NaClO_4; \mu = 1.596 \end{array}$

and on the nature of the catalyst. The linear relationship demonstrates that the effect of the activity coefficients is constant in media of constant ionic strength. In these HCl-NaCl solutions $75 \pm 2\%$ benzyl chloromethyl sulfone is formed, independent of the HCl-NaCl ratio. Thus, the nature of the cation does not influence the product determining slow step. Both an A-1 or an A-2 mechanism can account for these observations.

Salt effects. The effect of NaClO₄, NaCl and NaBr on the reaction rate of I in aqueous solution at a constant acid concentration (0.253N HClO₄) was determined at 25°. As in the case of arylsulfonyldiazomethanes, the salt with the most nucleophilic anion showed the largest acceleration of the reaction rate. As shown in Fig. 4 the effect of perchlorate anions on k_{ψ} is linear in the salt concentration, whereas the effect of halide anions is non-linear.

FIG. 4. Plot of k_{ψ} (sec⁻¹) vs. the salt concentration $c_{\rm S}$ (mole/l) for the hydrolysis of benzylsulfonyldiazomethane in 0.253N HClO₄ at 25°

NaClO₄
 O NaCl
 ♥ NaBr

The salt effects can only be reconciled with nucleophilic attack by halide on the diazonium ion.

Semiquantitative treatment of the rate enhancement by chloride anions. If the hydrolysis of α -diazosulfones would follow an A-1 pattern, subjected to only a specific medium induced salt effect of chloride anions, no correlation would be expected between the salt effect on the rate determining step and the salt effect on the subsequent fast product determining steps. However, assuming that the extra rate accelerating effect of chloride anions is due to nucleophilic attack on an intermediate, it is possible to correlate the product ratio $RSO_2CH_2Cl-(RSO_2H + CH_2O)$ and the increase in rate by chloride anions.

For an A-2 mechanism, the rate equation in HClO₄ solution reads (DA = α -diazosulfone):

$$-\frac{\mathrm{d}c_{\mathrm{DA}}}{\mathrm{d}t} = k_{\psi}^{\mathrm{HCIO_{A}}} \cdot c_{\mathrm{DA}} = k_{\mathrm{H}} \cdot c_{\mathrm{DA}} \cdot c_{\mathrm{H}}^{\oplus} \cdot c_{\mathrm{H_{2}O}}$$
(1)

ŝ
H 2
È
QNV
-
8
YSIS
D,
HYDR
THE
ğ
Z
Ĕ
Ş
EN C
8
5
ğ
PRO
ē
2
E
N
Ş
H
Z
Е
3
8
ΕĢ
BL
2

Percentage of PhCH ₂ SO ₂ CH ₂ Cl Calc	30	59	67	77	80	68	11	82	85	88		95			98					
Percentage of PhCH ₂ SO ₂ CH ₂ Cl Found	37	66	74	80	85	78	83	88	8	92		93			100					
$k_{\psi}^{\rm HCIO_4} \times 10^5 (\sec^{-1}) (\sec H_0)$	52-0	178	282	585	1020	9-30	17-4	19-9	34-7	52-5	c. 2:2	c. 4-7	c. 7.6	с. 10-0	c. 16-0	2:50	7-25	17-4	30-2	57-6
$k_{\Psi}^{\rm HCl} \times 10^5$ (sec ⁻¹)	74.0	439	857	2590	4840	29.2	0-17-0	108	211	441	27.9	95.5	237	532	750	9-27	21.6	63-7	156	430
Ho	+047	-0-06	-0-24	-0-51	-0-72	1-52	1-23	1-15	16-0	0-72	2.35	2.03	1.82	1.62	1-49	0-62	0.33	10-0	-0.22	-0.47
сна (mole/l)	0-297	162-0	1-067	1-596	2-086	0.240	0-433	0-496	0.710	0-965	0-217	0.435	0-649	0-878	1-049	160-1	1-518	2.145	2-656	3-130
Solvent	H,O	H ₅ O	Н,О	H ₂ O	H ₂ O	40% dioxan-H ₂ O	40% dioxan-H ₂ O	40% dioxan-H,O	40% dioxan-H ₂ O	40% dioxan-H ₂ O	60% dioxan-H ₂ O	40% dioxan-H ₂ O								
Compound	I	Π	Ι	-	I	-	Ι	I	-	-	I	I		I	-	П	II	п	п	П

and in HCl solution:

$$\frac{-\mathbf{d}c_{\mathbf{D}\mathbf{A}}}{\mathbf{d}t} = k_{\psi}^{\mathbf{H}\mathbf{C}\mathbf{I}} \cdot c_{\mathbf{D}\mathbf{A}} = k_{\mathbf{H}} \cdot c_{\mathbf{D}\mathbf{A}} \cdot c_{\mathbf{H}^{\oplus}} \cdot c_{\mathbf{H}_{2}\mathbf{O}} + k_{\mathbf{C}\mathbf{I}} \cdot c_{\mathbf{D}\mathbf{A}} \cdot c_{\mathbf{H}^{\oplus}} \cdot c_{\mathbf{C}\mathbf{I}^{\Theta}}$$
(2)

In these equations $k_{\rm H}$ and $k_{\rm CI}$ are dependent on the acid concentration because they contain the respective activity coefficients. The term $k_{\rm H} \cdot c_{\rm DA} \cdot c_{\rm H^{\oplus}} \cdot c_{\rm H_{2O}}$ measures the amount of RSO₂CH₂OH (dissociated into RSO₂H and CH₂O) formed at a particular HCl concentration and the term $k_{\rm Cl} \cdot c_{\rm DA} \cdot c_{\rm H^{\oplus}} \cdot c_{\rm Cl^{\ominus}}$ the amount of RSO₂CH₂Cl. In the following discussion the reasonable but basic assumption* will be made that the substrate is protonated to the same extent at the same H₀ values in HClO₄ and HCl solutions of moderate acidity. This allows the substitution of Eqn (1) in Eqn (2) and the term $k_{\rm Cl} \cdot c_{\rm DA} \cdot c_{\rm H^{\oplus}} \cdot c_{\rm Cl^{\ominus}}$ can be evaluated at a particular H₀.

For benzylsulfonyldiazomethane (I) the product ratio has been determined in aqueous HCl, in aqueous HClO₄ with added NaCl and in HCl solutions in 40% and 60% dioxan-water. Tables 6 and 7 show that, within experimental error, the rate enhancement by chloride ions correlates satisfactorily with the amount of PhCH₂SO₂CH₂Cl formed during hydrolysis. Therefore the reaction with chloride ions follows the A-2 pattern.[†] In addition, the observed correlation suggests that the reaction with water has also a nucleophilic contribution to the transition state of the slow step, because in the case of an A-1 process with water in the presence of chloride ions, additional quantities of PhCH₂SO₂CH₂Cl would be formed from the carbonium ion.

c _{sak} (mole/l)	$k_{\psi}^{\text{NaClO}_4} \times 10^5 \text{ (sec}^{-1}\text{)}$	$\frac{k_{\psi}^{\text{NaCl}} \times 10^5}{(\text{sec}^{-1})}$	Percentage of PhCH ₂ SO ₂ CH ₂ Cl Found	Percentage of PhCH ₂ SO ₂ CH ₂ Cl Calc	$\frac{k_{\phi}^{\text{NaBr}} \times 10^5}{(\text{sec}^{-1})}$
0-391	47.3	82.6	33	43	101
0.818	58·8	142	55	59	259
1.210	70-2	209	67	67	419
1.627	82-0	316	74	74	700
2.290	96.9	59 8	80	83	

TABLE 7. SALT EFFECT OF NaCIO4, NaCI AND NABr on the rate of hydrolysis of I in 0.253N HClO4 at 25°

Starting from the observed fractions F of benzyl chloromethyl sulfone formed, the rate constants $k_{\rm H}$ and $k_{\rm Cl}$ at a particular acid concentration can be evaluated by means of the equations:

$$k_{\rm Cl} \cdot c_{\rm H^{\oplus}} \cdot c_{\rm Cl^{\oplus}} = k_{\bullet}^{\rm HCl} \cdot F$$
(3)

$$k_{\rm H} \cdot c_{\rm H^{\oplus}} \cdot c_{\rm H_{2O}} = k_{\bullet}^{\rm HCl} \cdot (1-{\rm F}) \tag{4}$$

The values of $k_{\rm H}$. $c_{\rm H_2O}$ and $k_{\rm CI}$ for the hydrolysis of I in aqueous HCl and in 0.253N HClO₄ with added NaCl are collected in table 8.

* Deviations will only be found for weak non-Hammett bases in very concentrated acidic media.

† W. J. Albery and R. P. Bell (*Trans. Faraday Soc.* 57, 1942 (1961)) have proposed an A-2 mechanism for the hydrolysis of ethyl diazoacetate using essentially the same argument, although they did not always carry out product analyses and kinetic measurements in the same solution. Adopting the method depicted by us to the results of these authors gives within experimental error the same agreement between rate acceleration and chloroacetic ester formation.

1746

с _{на}	^С нсю4	c _{NeCl}	Fraction of PhCH ₂ SO ₂ CH ₂ Cl Found	$k_{\rm H} \cdot c_{\rm H_{2O}} \times 10^5$ (Imole ⁻¹ sec ⁻¹)	$k_{\rm Cl} \times 10^{5}$ $(l^2 { m mole}^{-2} { m sec}^{-1})$
0.297			0.37	157	311
0-791			0.66	188	464
1.067			0.74	209	557
1.596			0.80	326	808
2.086			0.85	350	944
	0-253	0.391	0.33	221	280
	0.253	0.818	0.55	256	381
	0.253	1.210	0.67	276	463
	0.253	1.627	0.74	328	574
	0.253	2.290	0.80	480	835

TABLE 8. RATE CONSTANTS FOR THE REACTION OF I WITH WATER $(k_{\rm H})$ and chloride ion $(k_{\rm Cl})$

TABLE 9. RATE CONSTANTS EXTRAPOLATED TO ZERO IONIC STRENGTH

Compound	Solvent	Catalyst	$k_{\rm H}^0 \times 10^{5*}$ (l ² mole ⁻² sec ⁻¹)	$k_{\rm C1}^0 \times 10^5$ (1 ² mole ⁻² sec ⁻¹)
PhCH,SO,CHN,	H ₂ O	HCIO.	2.6	
PhCH ₂ SO ₂ CHN ₂	H ₂ O	HCI	2.6	155
PhCH ₂ SO ₂ CHN ₂	H₂O	0.253N HClO ₄ + NaCl	2.6	140
PhCH ₂ SO ₂ CHN ₂	40% dioxan-H ₂ O	HCl	0.93	c. 340
Ph CH ₂ SO ₂ CHN ₂	60% dioxan-H ₂ O	HCl	0.72	c. 500
Me ₃ CSO ₂ CHN ₂	40% dioxan-H ₂ O	HCl	0.036	c. 4·0
p-NO ₂ C ₆ H ₄ SO ₂ CHN ₂	H ₂ O	HC1	0.71	c. 89

* Calculated with $c_{H_2O} = 55M$.

Estimates of $k_{\rm H}^0$ (= $k_{\rm H}$ at ionic strength $\mu = 0$) could be made by extrapolation to zero ionic strength by the use of the equation, $\ln k_{\rm H} = \ln k_{\rm H}^0 + B\mu$, originally derived for the reaction between an ion (in this case the diazonium ion) and a neutral dipolar molecule (water) in dilute solutions.^{19,'20} Although the reaction media employed are outside the range of diluted solutions, excellent straight lines were obtained by plotting $\log (k_{\psi}^{\rm HCIO_4}/c_{\rm H^{\oplus}}) = \log (k_{\rm H} \cdot c_{\rm H_2O}) vs. \mu$ for HClO₄ solutions in water, in 40% and 60% dioxan-water (Table 9). The same treatment was applied to the $k_{\rm H} \cdot c_{\rm H_2O}$ values (Table 8) obtained from Eqn (4), which gave $k_{\rm H}^0$ values in excellent agreement (Table 9) with that found in HClO₄ solution (in the latter case $k_{\rm H}^0 \cdot c_{\rm H_2O}$ was obtained by extrapolating $\log (k_{\rm H}^{\rm HCIO_4}/c_{\rm H^{\oplus}})$ to $\mu = 0$.

In solutions containing chloride ions, $\log k_{Cl}$ is proportional to $\sqrt{\mu}$ as has been predicted¹⁹ for a reaction between two oppositely charged ions.³ In aqueous HCl $(k_{Cl}$ values from Table 8) k_{Cl}^0 (= k_{Cl} at $\mu = 0$) was found by extrapolating log k_{Cl} to $\sqrt{\mu} = 0$ (Table 9). In the case of 0.253N HClO₄ with added NaCl (k_{Cl} values from Table 8) extrapolation of log k_{Cl} to $\sqrt{c_{NaCl}} = 0$ gave k_{Cl}^0 (Table 9). Reasonable agreement exists between the k_{Cl}^0 values evaluated for both cases. Since less extensive data on the product composition are available for the hydrolysis of I and II in solutions of HCl in 40% or 60% dioxan-water, the $k_{\rm Cl}$ values at a particular HCl concentration were determined by means of the Eqns (1) and (2) and assuming the same steady-state concentration of the diazonium ion at the same H₀ in HClO₄ and HCl. By plotting log $k_{\rm Cl}$ vs. $\sqrt{\mu}$ and extrapolating to $\sqrt{\mu} = 0$, the $k_{\rm Cl}^0$ values (Table 9) were found.

For I in aqueous HCl the ratio k_{Cl}^0/k_H^0 amounts to about 56 and shows that the reaction is rather insensitive to nucleophilic attack, just as was proposed for the arylsulfonyldiazomethanes.¹ The value of k_{Cl}^0 increases with decreasing polarity of the medium as expected for a bimolecular reaction between two ions.¹⁹

The evaluation of $k_{\rm H}^0$ and $k_{\rm Cl}^0$ (Table 9) for the hydrolysis of *p*-nitrophenylsulfonyldiazomethane in aqueous HCl was carried out in the same way as described for I using the data published previously.¹

The reaction rates of substrates with various nucleophiles relative to water at 25° have been successfully correlated by Edwards²¹ in a four parameter equation. Recently Davies^{22,23} extended this theory and renamed it the oxibase scale:

$$\log \frac{k_{(X)}}{k_{(H_2O)}} = \alpha E + \beta H \quad (X = nucleophile)$$

In this equation $k_{(X)}/k_{(H_2O)}$ is the relative rate of X compared to water, E and H are characteristic constants for the nucleophile and α and β are constants for the substrate.

In Table 10 values for $k_{(X)}/k_{(H_{2}O)}$ are shown for MeCOCH₂N^{\oplus} (as calculated with the oxibase scale parameters²²) together with the approximate values for PhCH₂SO₂CH₂N^{\oplus} and p-NO₂C₆H₄SO₂CH₂N^{\oplus} derived from our kinetic results

Diazonium ion	Nucleophile X	Ε	н	α	β	$\frac{k_{(\mathrm{X})}}{k_{(\mathrm{H}_2\mathrm{O})}}$
MeCOCH ₂ N [®]	Cl ^e	1.24	-3	2.37	0.191	230
MeCOCH,N [®]	Br⇔	1.51	-6	2.37	0-191	270
MeCOCH ₂ N [®]	CIO	-0.73	-9	2.37	0.191	3·5 × 10 ⁻⁴
EtOOCCH ₂ N [⊕]	Cle	1.24	-3			150
PhCH,SO,CH,N [®]	Cl ₀	1.24	-3	c. 1.7	c. 0.12	56
PhCH ₂ SO ₂ CH ₂ N [®]	Br⊖	1.51	-6	c. 1·7	c. 0·12	c. 72*
PhCH ₂ SO ₂ CH ₂ N [®]	ClO	-0.73	-9	c. 1.7	c. 0.12	$c.5 \times 10^{-3}$
$p-NO_2C_6H_4SO_2CH_2N_2^{\oplus}$	Cle	1.24	-3			c. 125

Table 10. Sensitivity to nucleophilic attack of some diazonium ions in aqueous solutions at 25°

* Approximate value obtained from the salt effect of NaBr in aqueous 0.253N HClO₄.

 $(k_{Cl}^0 \text{ and } k_H^0)$ and the value for $EtO_2CCH_2N_2^{\oplus}$ calculated from the data given by Albery and Bell.* An estimate of the α and β values for the decomposition of the benzylsulfonylmethyldiazonium ion has been made (Table 10).

The acid-catalysed hydrolysis of α -diazosulfones has clearly less nucleophilic assistance than that of ethyl diazoacetate^{*} and diazoacetone.²⁴ The difference

* See footnote † on p. 1746.

TABLE 11. ACTIVATION PARAMETERS FOR THE HYDROLYSIS OF BENZYLSULFONYLDIAZOMETHANE AND 1-BUTYLSULFONYLDIAZOMETHANE

ΔS [‡] (e.u.)	- 16 - 10	6 -	- 16	-17	- 17	- 15	- 18	80 	- 13
ΔH [‡] (kcal/mole)	17-4 17-9	17-6	18-0	16-0	17-2	18.0	16.9	20·1	18.6
$k_{\psi} \times 10^{5}$ (sec ⁻¹) 40°	172 1260	3800	42·1	644	123	82.6	131	106	102
$k_{\psi} \times 10^{5}$ (sec ⁻¹) 25°	42·6 282	870	9-34	169	29:2	18-3	31.8	19-8	21.6
Catalyst	0-253N HCIO4* 1-069N HCIO4	1-076N HCI	0-220N HCIO4	1-206N HCIO4	0-240N HCI	0-481N HCIO.	0-230N HCI	1-645N HCIO4	1-519N HCI
Solvent	Н ₂ О Н ₂ О	H_2O	40% dioxan-H ₂ O	40% dioxan-H ₂ O	40 % dioxan-H ₂ O	60% dioxan-H ₂ O	60% dioxan-H ₂ O	40 % dioxan-H ₂ O	40% dioxan-H ₂ O
Compound	PhCH ₂ SO ₂ CHN ₂ PhCH ₂ SO ₂ CHN ₂	PhCH ₂ SO ₂ CHN ₂	Me ₃ CSO ₂ CHN ₂	Me ₃ CSO ₂ CHN ₂					

* The ΔS^{\dagger} and ΔH^{\ddagger} values were derived from a plot of log k_{μ} vs. 1/T, see Fig. 5.

between the α -diazosulfone and the α -diazoketone is primarily the result of a decrease in α . The β -value is slightly larger for MeCOCH₂N₂^{\oplus} due to the greater electronegativity of the carbonyl group compared with the sulfonyl group.²⁵

Activation parameters. The activation parameters ΔH^{\ddagger} and ΔS^{\ddagger} for the hydrolysis reaction of the alkylsulfonyldiazomethanes in water (I), 40% dioxan-water (I and II) and 60% dioxan-water (I) are collected in Table 11.

Mechanistic evidence can be obtained especially from entropy values, but as Schalenger and Long⁸ have pointed out, the exact interpretation of entropy data for reactions in solutions is by no means straightforward. Nevertheless, the distinction between an A-1 and A-2 mechanism is at least in part possible by examination of ΔS^{\ddagger} data.²⁶ If *no* nucleophile is incorporated in the transition state of the slow step and only the C—N bond is somewhat longer than in the original diazonium ion, than there will be a decreased electrostatic interaction with the solvent due to the increased size of the ion. Thus, A-1 mechanisms will have positive ΔS^{\ddagger} values for the slow step. In the case of A-2 mechanisms, the bonding of a nucleophile in the transition state causes negative ΔS^{\ddagger} values. Using this criterion, the data in Table 11 are indicative for an A-2 process.

FIG. 5. Plot of log k_{ϕ} vs. 1/T for the hydrolysis of benzylsulfonyldiazomethane in 0.253 N HClO₄

The ΔS^{\ddagger} value of the protonation is slightly positive when protonation occurs exclusively by the hydronium ion. This can be explained by the more effective solvation of the proton¹ compared with the diazonium ion. The activation parameters are the sum of those of the equilibrium step and the rate determining step. Consequently about 17 e.u. are lost in the transforation of the diazonium ion derived from I to the transition state for the loss of nitrogen. This is a reasonable value for the incorporation of a water molecule in a transition state without much bond making.⁸.*

It should be noted that I gives an excellent straight line (Fig. 5) by plotting log k_{ψ} vs. 1/T, which is in contrast to the somewhat puzzling results of Thomas and Leveson²⁷ for the hydrolysis of some α -diazoketones.

^{*} Some entropy may be gained in the diazonium ion by extra possibilities for rotation compared to the more immobile —^eCH—ⁿ[∞] ≡ N group.

Comparison of the activation parameters of I in 0.253N and 1.069N aqueous $HClO_4$ indicates that less hydrogen bonding occurs in the stronger acidic media because of a decrease in ΔS^{\ddagger} and a slight increase in ΔH^{\ddagger} . The less negative ΔS^{\ddagger} values and the higher ΔH^{\ddagger} values for II as compared with I may be the result of steric hindrance to solvation of the transition state of the slow step.

A rough comparison of the free enthalpy profiles³ for the acid-catalysed hydrolysis of 1-phenyl-3-diazoaœtone¹⁰ and benzylsulfonyldiazomethane with the aid of the available kinetic data, reveals that the bimolecular second step for the α -diazosulfone requires about 4 kcal/mole more free enthalpy of activation than the slow step in the hydrolysis of the α -diazoketone.

Concluding remarks on the mechanism. On account of the evidence presented in the preceeding sections, the mechanism that satisfactorily fits the available data is the A-2 type mechanism.

The small nucleophilic assistance in the decomposition of the sulfonylmethyldiazonium ions can chiefly be attributed to the good leaving ability of the very stable N_2 molecule, the steric²⁸ and field²⁹ effects of the sulfonyl group (especially in the case of negatively charged nucleophiles) and the initial position of the positive charge on the N atom instead of on the C atom on which the attack takes place. However, the field effect will be partially compensated by the electric influence of the positive charge on the diazonium ion.

Loosening of the C—N bond in the diazonium ion is accompanied by unfavourable accumulation of positive charge next to the electronegative sulfonyl group. Although the Hammond postulate³⁰ suggests that the transition state of the slow step will resemble the diazonium ion, it is reasonable to suppose that some delocalization of the positive charge in the α -position to the sulfonyl group by interaction with a nucleophile in the transition state will reduce the otherwise very high energy content of the system.

The mechanism of hydrolysis for alkyl- and arylsulfonyldiazomethanes is essentially the same. Before rationalizing minor changes in reactivity, it should be kept in mind that no large entropy differences between both types of α -diazosulfones are involved and that the rates of deuteration vary only little. Since it is reasonable to suppose¹¹ that PhCH₂SO₂CH₂N^{\oplus} is more acidic than *p*-MeC₆H₄SO₂CH₂N^{\oplus}, the slower rate of hydrolysis of benzylsulfonyldiazomethane (I) as compared with *p*methylphenylsulfonyldiazomethane would be satisfactorily explained by assuming a lower steady-state concentration of PhCH₂SO₂CH₂N^{\oplus}. However, effects on the slow step have also to be considered because the ratio $k_{Cl}^0/k_{H_{2O}}^0$ for I and *p*-NO₂C₆H₄SO₂CHN₂ shows that PhCH₂SO₂CH₂N^{\oplus} is less discriminating towards nucleophiles than *p*-NO₂C₆H₄SO₂CH₂N^{\oplus}. (Table 10).

In order to picture an energy profile of the hydrolysis reaction, a pK_a value of about -3 for the sulfonylmethyldiazonium ions was estimated.* Using this value and the data from Table 11, a ΔG^{\dagger} value of about 14 kcal/mole was calculated for the bimolecular step. This rather low energy requirement causes that small changes in solvation of the diazonium ion proceeding to the transition state of the slow step, can play an important role.

* The guess has been made by taking into account, (1) the rate of protonation of I; (2) the electron attracting power of the $-N \equiv N$ moiety and the sulforyl group; (3) the presence of a positive charge.

The variation of k_D/k_H with the acid concentration* (Table 1) may be the result of a somewhat decreased solvation³¹ of the transition state in the more acidic media (due to a decrease in a_{H_2O}). This results in a stronger bonding of a proton (or deuteron) to the diazo molecule and consequently will cause a larger loss of zero point energy of the proton under these conditions.

 α -Diazoketones are less readily protonated but more easily hydrolysed¹ than the structurally corresponding α -diazosulfones. The slow step in the hydrolysis of the α -diazoketones has apparently lower energy requirements which is in line with the favourable influence of an α -carbonyl group on nucleophilic displacement reactions.³² This neighbouring group overlap effect explains the higher $k_{(X)}/k_{(H_2O)}$ values[†] for the α -diazoketones and again confirms the bimolecular character of the slow step in the hydrolysis of α -diazosulfones and α -diazoketones.

EXPERIMENTAL

Methods. Pseudo first-order rate constants of hydrolysis k_{ψ} were obtained by the kinetic procedure described in the previous paper.¹ In all cases the room temp was kept at $25.0 \pm 0.3^{\circ}$. For I the selected wavelength was 230 mµ (water) or 380 mµ (dioxan-water), for II 380 mµ (dioxan-water). Rate constants were averaged over two or more measurements and were reproducible to within 3%.

Reactions at temps above 25° and those with half life times less than 8 min were carried out in adequately thermostated cell compartments (Zeiss PMQ II, 2 cm cells, equipped with a magnetic stirring device).

Estimates of the RSO₂CHN₂-RSO₂CDN₂ exchange rate in 60% (v/v) dioxan-D₂O with or without added catalyst were made by means of a Varian A-60 PMR spectrometer. The solvent (or soln) (1·2 ml) was thermostated prior to use and the α -diazosulfone (about 45 mg) was then dissolved as quickly as possible. The soln was kept in the probe (37·7 ± 0·8°) during the whole reaction time (100% exchange). The integrated —CHN₂ signal I, was measured as a function of time. By plotting log I, against time, reasonably straight lines were obtained from which the pseudo first-order rate constants of exchange k_{ex} were evaluated. Some experiments were carried out at 25·5 ± 0·5° using the Varian variable temp probe. The temp inside the reaction mixture was measured with a thermocouple. The experimental error in k_{ex} was estimated to be roughly 20% chiefly because of temp fluctuations. After complete exchange the presence of RSO₂CDN₂ was ensured by addition of water, which resulted in the reappearance of the —CHN₂ signal.

Materials, solvents, reagents. The α -diazosulfones were prepared by the method of Van Leusen and Strating.² The purification and preparation of the solvents and chemicals was reported previously.¹

Benzyl hydroxymethyl sulfone (III) was prepared by dissolving benzylsulfinic acid³³ (0-013 mole) in 5 ml water and 1.5 ml of 36 % formaldehyde in water. This mixture was kept at about 60° for 4 min and then cooled to 20°. White crystals separated which were collected and washed with 20 ml benzene (yield 95%, m.p. 110-115°).

Recrystallization from MeOH at low temp furnished 60% of the analytically pure III, m.p. 114–118° dec. (Found: C, 51·85; H, 5·50; S, 16·77. Calc. for $C_8H_{10}O_3S$: C, 51·60; H, 5·41; S, 17·22%.)

The PMR spectrum of a 10% soln in hexadeuteroacetone showed two peaks of equal intensity at τ 5.63 ppm and τ 5.55 ppm (methylene protons), one peak at about τ 2.60 ppm (aromatic protons) and a broadened signal (OH group) at about τ 5.0 ppm. The IR spectrum (KBr) exhibited absorptions at 3400 cm⁻¹ (OH group), 1130 and near 1300 cm⁻¹ (sulfonyl group).

Reaction products. Compound I decomposes very slowly in pure water at 25°. After 24 hr approximately 20% decomposition had taken place as indicated by the change in the UV spectrum.[‡] After 56 days the

* A variation of the solvent deuterium isotope effect with the acid concentration has also been found (but not interpreted) for the generally acid catalysed decomposition of diphenyldiazomethane in toluene in the presence of benzoic acid: R. A. More O'Ferrall, W. K. Kwok and S. J. Miller, J. Am. Chem. Soc. **86**, 5553 (1964).

 \dagger An alternate explanation of the higher reactivity of the α -diazoketones might be hydration of the carbonyl group in the ketodiazonium ion.

[‡] It cannot be excluded that the slow decomposition in neutral water proceeds partly via the thermally generated carbene.³⁴

absorbance was constant with time and the spectrum was practically identical to that of benzylsulfinic acid in water.

Decomposition was much more rapid when I (159 mg) was dissolved in 4 ml of 60% (v/v) dioxan-water containing 0.46N HClO₄. The reaction mixture was kept overnight at room temp and then extracted 3 times with 3 ml CH₂Cl₂. The white crystalline material (yield 75%) obtained after removal of the solvent *in vacuo* at 25° was identical^{*} with an authentic sample of III. The loss of about 25% can only be attributed to dissociation of III into benzylsulfinic acid and formaldehyde.

The UV spectrum of a diluted *neutral* aqueous soln of III showed a max at 236 m μ (log ϵ 3.87) and the spectrum was identical within 4% to that of sodium benzylsulfinate. Apparently III was dissociated ³⁵ completely in this *diluted* soln into formaldehyde and benzylsulfinic acid.⁺ This dissociation reaction is most likely of the E-2 elimination-type:

$$PhCH_2SO_2 - CH_2 - O - H + OH_2 - PhCH_2SO_2^{\Theta} + CH_2O + H_3O^{\Theta}$$

In acidic solns in the range involved in the kinetic measurements on the α -diazosulfones (0-025-2.5N HClO₄) the products of hydrolysis showed no absorption maxima above 220 mµ. These spectra were practically identical to that of benzylsulfinic acid which is largely undissociated in these acidic solns.[‡] The features of the spectra change hardly between 0.5 and 2.5N HClO₄. In addition, the UV spectra obtained by dissolving III and benzylsulfinic acid are identical within experimental error between 0.025 and 2.5N HClO₄. No indications were found for disproportionation of the sulfinic acid.

In the more strongly acidic (about 2.5N) HClO₄ solns, the dissociation of III is no longer fast compared with the hydrolysis of I. In these media the absorbance at 230 mµ increases again after the initial decrease (from which the rate constants of hydrolysis can be evaluated). The increase in absorbance also fits excellently first order kinetics and gives a rate constant ($k = 362.10^{-5} \text{ sec}^{-1}$ in 2.655N HClO₄) which is within experimental error equal to that obtained from the increase in absorbance upon addition of III to a soln of the same acidity ($k = 376.10^{-5} \text{ sec}^{-1}$). These observations can be interpreted by assuming a relatively slow dissociation ³⁷ of the protonated or hydrogen bonded III. The experiments show that the sulfinic acid and formaldehyde are actually formed *via* the intermediate hydroxymethyl sulfone and not in a concerted mechanism directly from the diazonium ion.

No evidence has been found for the intermediacy of covalent perchlorates 38 RSO₂CH₂OClO₃ (which have UV spectra very different from those of the sulfinic acids RSO₂H and relatively slow rates of hydrolysis in acidic solns).§

If I (122 mg) was dissolved in 10 ml of 60% (v/v) dioxan-water containing 4.6N HCl and the reaction product was isolated by extraction with CH₂Cl₂, 91% of pure PhCH₂SO₂CH₂Cl IV (m.p. 101-102°, lit.³⁹ 103°) was obtained. No III could be detected. The UV spectrum of IV showed a max at 210 mµ (log e 3.98) and a low intensity max at about 260 mµ. The spectrum did not change with time in acidic soln or in neutral water. Conversion of III into IV upon treatment with HCl was impossible under the reaction conditions used for the hydrolysis of α -diazosulfones.

The composition of the reaction products of I in aqueous HCl and in HCl solns in 40% (v/v) and 60% (v/v) dioxan-water could be analysed with an accuracy of about 5% by comparison of the UV spectra with reference spectra of mixtures of III and IV of known composition.

Acknowledgement-The authors are much indebted to Professor J. Strating for his stimulating interest.

REFERENCES

- ¹ Part II: B. Zwanenburg and J. B. F. N. Engberts, Rec. Trav. Chim. 84, 165 (1965).
- ² A. M. van Leusen and J. Strating, Ibid. 84, 151 (1965).
- ³ For additional details see the thesis of J. B. F. N. Engberts.
- ⁴ C. A. Bunton and V. J. Shiner, J. Am. Chem. Soc. 83, 42, 3207, 3214 (1961).
 - * Identical IR and PMR spectra.
 - † Sulfinic acids are rather strong acids.
 - [‡] The UV spectra clearly indicated that benzylsulfinic acid is less dissociated in D₂O than in water.

§ A study on the mechanism of the hydrolysis reaction of this type of perchloric esters is in progress in our laboratory.

- ⁵ S. K. Hall and E. A. Robinson, Canad. J. Chem. 42, 1113 (1964).
- ⁶ M. Eigen, Angew. Chem. 77, 814 (1965).
- ⁷ E. J. Corey and T. H. Lowry, Tetrahedron Letters 793 (1965).
- ⁸ L. L. Schalenger and F. A. Long, *Advances in Physical Organic Chemistry* (Edited by V. Gold) Vol. I; p. 1. Academic Press, New York.
- 9 H. A. Morrison and P. Yates, Chem. & Ind. 931 (1962).
- ¹⁰ H. Dahn and H. Gold, *Helv. Chim. Acta* 46, 983 (1963); H. Dahn, A. Donzel, A. Merbach and H. Gold, *Ibid.* 46, 994 (1963).
- ¹¹ R. G. Pearson and R. L. Dillon, J. Am. Chem. Soc. 75, 2439 (1953).
- ¹² F. A. Long and M. A. Paul, Chem. Rev. 57, 1 (1957).
- ¹³ C. A. Bunton, J. B. Ley, A. J. Rhind-Tutt and C. A. Vernon, J, Chem. Soc. 2327 (1957).
- ¹⁴ B. Torck, M. Hellin and F. Coussemant, Bull. Soc. Chim. Fr. 1657 (1962).
- ¹⁵ M. A. Paul and F. A. Long. Chem. Rev. 57, 935 (1957).
- ¹⁶ N. C. Deno, P. T. Groves and G. Saines, J. Am. Chem. Soc. 81, 5790 (1959).
- ¹⁷ W. M. Schubert and R. H. Quacchia, *Ibid.* 85, 1278 (1963).
- ¹⁸ J. F. Bunnett. Ibid. 83, 4956, 4968, 4973, 4978 (1961).
- 19 A. A. Frost and R. G. Pearson, Kinetics and Mechanism (2nd Edition) Wiley, New York (1961).
- ²⁰ E. S. Amis, Solvent effects on reaction rates and mechanism. Academic Press, New York (1966).
- ²¹ J. O. Edwards, J. Am. Chem. Soc. 76, 1540 (1954); Ibid. 78, 1819 (1956).
- ²² R. E. Davis, Survey of Progress in Chemistry (Edited by A. F. Scott) Vol. 2; p. 189. Academic Press, New York (1964).
- ²³ R. E. Davis, H. Nakshbendi and A. Ohno, J. Org. Chem. 31, 2702 (1966).
- ²⁴ C. E. McCauley and C. V. King, Ibid. 74, 6221 (1952).
- ²⁵ J. E. Huheey, J. Phys. Chem. 70, 2086 (1966).
- ²⁶ Compare E. Whalley, Advances in Physical Organic Chemistry (Edited by V. Gold) Vol. 2; p. 136. Academic Press, New York (1964).
- 27 C. W. Thomas and L. L. Leveson, Chem. & Ind. 1264 (1966).
- ²⁸ F. G. Bordwell and G. D. Cooper, J. Am. Chem. Soc. 73, 5184 (1951); F. G. Bordwell and W. T. Brannen, Jr., Ibid. 86, 4645 (1964) and Refs cited therein.
- ²⁹ cf C. Y. Meyers, Tetrahedron Letters 1125 (1962).
- ³⁰ G. S. Hammond, J. Am. Chem. Soc. 77, 334 (1955).
- ³¹ N. C. Deno, Survey of progress in chemistry (Edited by A. F. Scott) Vol. 2; p. 155. Academic Press, New York (1964).
- ³² A. J. Sisti and S. Lowell, Canad. J. Chem. 42, 1896 (1964).
- 33 W. E. Truce and F. E. Roberts, Jr., J. Org. Chem. 28, 593 (1963).
- ³⁴ A. M. van Leusen, R. J. Mulder and J. Strating, Tetrahedron Letters 543 (1964).
- ³⁵ Compare H. Bredereck and E. Bäder, Chem. Ber. 87, 129 (1954).
- ³⁶ R. K. Burkhard, D. E. Sellers, F. de Cou and J. L. Lambert, J. Org. Chem. 24, 767 (1959). Compare H. Bredereck and E. Bäder, Chem. Ber. 87, 129, 784 (1954).
- ³⁷ cf H. Hellmann and G. Opitz, Chem. Ber. 90, 8 (1957).
- ³⁸ J. B. F. N. Engberts and B. Zwanenburg, Tetrahedron Letters 831 (1967).
- ³⁹ H. Böhme, H. Fischer and R. Frank, Liebigs Ann. 563, 54 (1949).